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Abstract

Storage management is an important part of
DB2. The buffer pool in DB2 is used to catch
the disk pages of the database, and its manage-
ment algorithm can significantly affect perfor-
mance. Because of the complexity of DB2 and
the workloads running on it, the buffer pool
management algorithm is hard to study, con-
fig, and tune. In order to investigate the buffer
pool management algorithm under controlled
circumstances, a trace of buffer pool requests
was collected and a trace-driven simulator was
developed. The impact of various parameters
of the buffer pool management algorithm was
studied in the simulator. Relationships among
different activities competing for storage space
and the I/O channel were examined. A self-
tuning algorithm for buffer pool management
was developed and tested in both the simula-
tor and DB2. Simulation tests showed that the
new algorithm can achieve comparable perfor-
mance to a hand-tuned system. The experi-
ments in DB2 on a small and a medium TPC-C
database verified the simulation results.

1 Introduction

In a Database Management System (DBMS),
a buffer pool is used to cache the disk pages of

the database. Because the speed gap between
disk and memory is large, the effectiveness of
the buffer pool management algorithm is very
important to the performance of the DBMS.
Tuning such an algorithm is a complex task
because of the number of parameters involved
and the complexity of their interactions. It re-
quires a detailed understanding of the nature
of activities that compete for the resources be-
ing managed, including storage space and the
I/O channel. Because of the complexity of a
commercial DBMS, however, it is often difficult
to analyze the buffer pool algorithm, or imple-
ment a new one and test it directly. Simulation
provides an effective alternative.

For our research, a blend of direct experi-
mentation and trace-driven simulation is being
used in a detailed study of buffer pool man-
agement in DB2, IBM’s popular commercial
relational DBMS. The TPC-C [9] benchmark
provides the workload. A detailed buffer pool
simulator has been developed for DB2 and ver-
ified. To provide a realistic reproducible work-
load for the simulation experiments, a trace
of the buffer pool requests when running the
TPC-C benchmark was captured. The effects
of parameters of the buffer pool algorithm are
examined by simulation. Activities of the I/O
channel in the buffer pool are investigated as
well. A self-tuning algorithm was proposed
to simplify the configuration of the number of
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page cleaners of the buffer pool management
algorithm. Simulation results and experiments
in DB2 showed that the new algorithm can
achieve comparable performance to hand-tuned
system.

This paper is organized as follows: §2 gives
a brief review of some previous work relat-
ing to database buffer pool management and
self-tuning architecture; §3 describes the buffer
pool management algorithm used in DB2; §4
presents the trace collection method and the
trace formats; §5 discusses the simulator and
its verification; §6 presents the results of the
experiments conducted to study the relation-
ships among buffer pool I/O activities and their
impacts on the buffer pool performance; § 7
discusses a self-tuning algorithm and its exper-
iment results in simulation and measurements;
§ 8 shows the simulation results and the real
system experiment results of the self-tuning
algorithm; §9 presents conclusions and future
work.

2 Related Work

It has been observed [7, 5, 8] that the references
to the disk pages of a database have locality.
Furthermore, this locality of reference is more
regular, predictable, and exploitable than the
localized reference activity found in programs
in general. For this reason, a buffer pool is
employed by a DBMS as a cache of disk pages.
Various database buffer pool management algo-
rithms, including LRU, FIFO, CLOCK, LRD,
DGCLOCK, and Working Set [3], are analyzed
and compared in [4]. A set of flexible predictive
buffer management algorithms was proposed in
[6].

All approaches aim to improve the hit ratio
of the buffer pool in order to reduce disk reads.
However, another problem is also important—
how and when to clean out dirty pages (i.e.
writing back to disk pages that have been
changed since being fetched into the pool).
Two approaches can be applied: page clean-
ing on demand and asynchronous page clean-
ing. In page cleaning on demand, a dirty page
will be cleaned only when it is selected for
replacement. In asynchronous page cleaning,
dirty pages are cleaned asynchronously before

they are selected for replacement. In tradi-
tional virtual memory systems, processes write
only to their data segments, and normally not
many dirty pages are generated. However, in a
database buffer pool, transaction-based work-
loads may generate so many dirty pages that
page cleaning on demand is not efficient. The
effect of the asynchronous page cleaning strat-
egy is investigated in this paper, and the ap-
proach proposed can be applied to all algo-
rithms mentioned above.

Because of the complexity of DBMS tuning,
some goal-oriented tuning algorithm are pro-
posed. [2] presents an approach to dynamically
adjust the buffer pool sizes of DBMS based
on response time goals. [1] proposes a goal-
oriented tuning architecture to convert the low
level control knobs (buffer pool size, working
buffer size, etc.) to high level transaction re-
sponse time goals.

3 The DB2 Buffer Pool

Management Algorithm

The buffer pool management algorithm con-
tains several parts: fetching, placement, and re-
placement. The fetching algorithm brings new
pages into the buffer pool. Normally, fetch-
ing on demand is used, but when there are se-
quential accesses to pages, prefetching can be
a helpful supplement to fetching on demand.
DB2 supports both fetching on demand and
prefetching. For this analysis, only fetching on
demand is used because there is no sequential
access in the TPC-C workload. The placement
algorithm defines how to place a page into the
free pool of the buffer. The replacement algo-
rithm defines how to maintain the free pool of
the buffer. Replacement on demand makes a
free space only when needed. Pre-replacement
tries to always keep spaces available by writ-
ing back to disk dirty pages that are deemed
not to be needed. Traditional buffer manage-
ment algorithms use only replacement on de-
mand, but both approaches are used in DB2
buffer pool management. By performing page
cleaning, the buffer pool maintains some space
holding clean pages that can be used immedi-
ately for new pages.
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3.1 Basic Replacement
Algorithm

Unlike traditional virtual memory manage-
ment, there is no hardware support in the
buffer pool to access a page that is not in mem-
ory. Therefore, a fix/unfix mechanism is used.
When the DBMS needs to access a page, it will
send a fix request to the buffer pool. If the
page is already in the buffer pool, no phys-
ical I/O is needed; otherwise, it is read into
the buffer pool from disk. The DBMS can ac-
cess this page freely from the buffer pool and
it cannot be evicted from memory after the fix.
When the DBMS finishes using this page, an
unfix request is sent to the buffer pool. Af-
ter the unfix, this page is allowed to be evicted
when needed.

3.2 Page Cleaning Algorithm

When a page is selected for replacement, its
status is checked. If it is clean (unchanged), its
space can be used immediately. If it is dirty, a
synchronous write must be performed to clean
this page. Synchronous writes negatively im-
pact the throughput of the system because the
space occupied by this dirty page cannot be
used until the synchronous write completes.

To alleviate this problem, one or more
page cleaners are used to clean out pages
asynchronously before synchronous writes are
needed. At the beginning, all page cleaners are
sleeping. Three kinds of events can wake up
the page cleaners:

• Exceeding the Dirty Page Threshold. The
dirty page threshold is a configurable pa-
rameter which indicates the desired per-
centage of dirty pages in the buffer pool.
Page cleaners will be awakened when the
percentage of dirty pages exceeds the
threshold. The default value of the thresh-
old is 60%.

• Dirty Replacement. When a dirty page is
selected from the buffer pool for replace-
ment, i.e. a synchronous write occurs, the
page cleaners wake up.

• Exceeding the softmax value. When the
percentage of changes recorded in the log

file exceeds the softmax value, the page
cleaners wake up.

When a page cleaner wakes up, it collects
some dirty pages and writes them back to the
disks. If the condition for page cleaning still ex-
ists, the page cleaner will begin another round
of collecting and cleaning. If the conditions for
page cleaning do not exist, the page cleaner will
sleep. When a page cleaner writes pages, the
clients do not need to wait for the writes di-
rectly. Therefore, these writes are called asyn-
chronous writes.

Figure 1 shows the I/O activities between the
buffer pool and the disks. The buffer pool can
be considered as two regions: the clean region
which contains clean pages, and the dirty region
which contains dirty pages. When the appli-
cations are running, many pages are read from
the disks. At the same time, many pages in the
buffer pool are changed, which causes the dirty
region to expand. The synchronous writes and
asynchronous writes write the dirty pages back
to the disks which causes the dirty region to
shrink. When the system is in stable state, the
number of pages changed is equal to the num-
ber of pages cleaned so that a constant supply
of free pages is available.

Expand

Reads
Synchronous
writesperformed by page cleaners

Asynchronous writes

TPC-C Dirty pages

Database on Disks

Buffer
Pool

Dirty Region Clean Region

Threshold

Figure 1: Buffer Pool and Its I/O Activities
with Disks

4 Trace Collection

4.1 Workload – TPC-C
Benchmark

The TPC-C benchmark is used to provide the
workload to the simulator and to provide the
“real” system against which simulation results
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are compared. This benchmark is among a
group of benchmarks defined by the Transac-
tion Processing performance Council1 (TPC).
The TPC-C Benchmark is an On-Line Transac-
tion Processing (OLTP) workload. It is a mix-
ture of read-only and update-intensive transac-
tions that simulate the activities found in com-
plex OLTP application environments. Multiple
transactions are used to simulate the business
activity of processing an order, and each trans-
action is subject to a response time constraint.

There are five kinds of transactions in the
TPC-C benchmark, and these are listed in Ta-
ble 1. The percentage column shows their re-
spective percentages in the total number of
transactions. For example, 45% transactions
are New-Order transactions. Because the New-
Order transaction is the backbone of the work-
load, the performance of the TPC-C bench-
mark is expressed in Transactions Per Minute
(TPM), which is defined as the number of New-
Order transactions processed per minute. The
size of the TPC-C database is given by the
number of “warehouses” defined. There are
about 100M bytes of data for one warehouse.

Table 1: TPC-C Transactions
Name Percentage

New-Order 45%
Payment 43%

Order-Status 4%
Delivery 4%

Stock-Level 4%

4.2 Trace Collection and
Contents

In order to collect the trace of the buffer pool
activities needed by the simulator, a TPC-C
database with 50 warehouses was created. The
benchmark runs on a PC Server running Win-
dows NT Server 4.0 in the Distributed Systems
Performance Laboratory at the University of
Saskatchewan. The DB2 version used is 6.1.
The TPC-C database is installed on 9 disks.

When the TPC-C benchmark is running,
transactions are sent to the DBMS. The DBMS

1http://www.tpc.org/

executes the transactions and requests disk
pages from the buffer pool. All fix/unfix re-
quests to the buffer pool are needed for the
simulation. The information of every request
going through the trace point shown in Figure 2
is recorded in a trace buffer in memory by the
trace tool. Because the trace buffer cannot hold
all the trace information needed for the sim-
ulator at one time, the TPC-C program was
changed so that it suspends before the trace
buffer is full, dumps the trace into a file, and
continues to run. By using this technique, ar-
bitrarily large traces can be obtained.

Fix/unfix requests

TPC-C

Upper DBMS Layer

Buffer Pool

Trace point

Disks

DBMS

Figure 2: Trace collection structure

Because of the overhead associated with this
data collection, the system runs more slowly
when recording the trace. Therefore, the se-
quences of the aggregated trace records from
all agents may change, but the sequence for
each agent does not change. The trace used by
the simulator is separated based on the agent
ID. Therefore, although the aggregated trace
sequence changes, it will not affect the simu-
lation result. The begin and end time of each
transaction is recorded in the TPC-C program.
This transaction information is inserted into
the trace recorded from the buffer pool sorted
by the timestamps. After these processes, the
trace can be used by the simulator. The trace
used in these experiments includes about 60
million buffer pool requests from 200 thousand
transactions.

Necessary information about fix and unfix re-
quests is recorded in the trace. Table 2 shows
the important fields of a trace record. The fix
mode indicates the type of fix request. There
are two kinds of fix: exclusive and shared. Any
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Table 2: Important Fields of the Trace
Field Value

type The type (fix or unfix) of this record
tid The number to identify requests from different clients
object type Can be INDEX or DATA
object id The number to identify the table this page belongs to
page number The disk address of the page
fix mode (only for fix) Can be EXCLUSIVE or SHARE
modify flag (only for unfix) Indicates whether or not this page has been modified

page can have at most one exclusive fix but can
have multiple shared fixes at the same time.

5 The Buffer Pool
Simulator

The buffer pool simulator simulates DB2’s
buffer pool management algorithm and the disk
subsystem. This simulator contains about 8000
lines of C++ code. An event-driven architec-
ture is used in the simulator. Different com-
ponents of the simulator communicate through
events. Figure 3 shows the components and
main event types.

NextRecord(clientId)
Read(Page#)

SyncWrite(Page#)

StartCleaning()

AsyncWrite(Page#)
SyncWrite(Page#)

Read(Page#)

Fix(Page#)
Unfix(Page#)

Fix(Page#)
Unfix(Page#)

IOFinish(Page#)

AsyncWrite(Page#) Dispatcher
Event

Pages

StartCleaning()

Buffer Pool

IOFinish(Page#)

NextRecord()

IOFinish(Page#)

Read

Buffer Pool
Manager

Disk

Agent
Cleaner

Page

Trace File

Figure 3: The Structure of the Simulator

There are four basic components in the sim-
ulator.

• The Buffer Pool Manager contains the ba-
sic buffer pool management algorithm. It
manages the placement and replacement

of the buffer pool pages. It accepts the
fix/unfix events, and sends out disk I/O
events (Read and SyncWrite). It also
sends StartCleaning events to trigger Page
Cleaners to start page cleaning.

• The Page Cleaner manages the page clean-
ing of the buffer pool. It accepts Start-
Cleaning events and performs page clean-
ing on the dirty pages of the buffer pool.
There can be more than one page clean-
ers in the simulator. Both the Buffer Pool
Manager and the Page Cleaner can access
Buffer Pool Pages which is the data struc-
ture holding all the pages of the buffer
pool.

• An Agent represents a client that sends out
requests to the Buffer Pool. Requests be-
long to each client are organized into a sep-
arated Trace File. Therefore, the Agent
simply reads a record (either fix or un-
fix) from its trace file and returns it to
the Buffer Pool Manager. The number of
Agents is the same as the number of clients
when running TPC-C.

• The Disk accepts disk I/O events (Read,
SyncWrite, and AsyncWrite) and return
IOFinish events. Because the track and
sector information of disk pages is not
available from the trace, it is assumed
that a disk has constant read and write
time. Unprocessed requests to a disk are
queued and served in a first-in-first-out
order. When there are multiple disks in
the simulator, different disks can perform
reads and writes simultaneously.

A timestamp is associated with each event.
All events will be sent to the event queue and
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sorted by their timestamps. The Event Dis-
patcher selects the event with the minimum
timestamp and sends it to the corresponding
component. This is a typical event flow when
fixing a page: a fix event is read from the
Agent and sent to the Buffer Pool Manager.
If the page is in the buffer pool, the fix fin-
ishes, and the Buffer Pool Manager sends a
NextRecord event to the Agent for the next
record. If the page is not in the buffer pool,
and a clean page is found for the replacement,
a Read event will be sent to the Disk, and when
the Buffer Pool Manager receives an IOFinish
event, it will send a NextRecord event to the
Agent asking for the next record.

All times in the simulator are relative, with
the crucial activities shown in Table 3. This set
of values was derived experimentally in order to
give realistic behaviour. By comparing simula-
tor results with results from our experimental
DB2 test bed it was determined that roughly
40 million units of simulator time corresponds
to 1 minute of real time on the DB2 test bed.
This means, for example, that a disk operation
on our system requires approximately 9 msec,
a reasonable value for our configuration. These
time parameters can be changed to reflect dif-
ferent configurations.

Table 3: Time Parameters in the Simulator

CPU operation time
FixTime 20
UnfixTime 16
GatherCleanPage 14
ListReadTime 1
BufferpoolReadTime 1
ReplacementTime 4

Disk operation time
ReadTime 6000
WriteTime 6000
AsynchronousWriteTime 6000

In real life, a buffer pool of a DBMS is usually
IO bound. Therefore, the CPU subsystem is
not part of the simulator in order to reduce
the complexity. This could be a defect when
the CPU overhead is high (e.g. the number of
users is high), but it is sufficient for the current

investigations.

5.1 Performance Measures

In order to determine the behaviour of the
buffer pool management algorithm, various
quantities related to page activity, throughput
and the I/O channel are measured. The de-
tailed measures describe the change of the state
of the buffer pool over time and activities as-
sociated with the movement of pages in and
out of the buffer pool. Quantities measured in-
clude the number of dirty pages in the buffer
pool, the number of pending I/O requests, the
number of pending writes (synchronous writes
and asynchronous writes), and the number of
reads over some interval of interest. The met-
ric Transactions Finished per Interval is used
to measure the throughput of the buffer pool.
If the time interval is one minute, the Transac-
tions Finished per Interval is the same as TPM.
In accordance with TPC-C practice, only the
number of New-Order transactions finished is
reported.

5.2 Simulator Calibration and
Verification

Running the simulator with the time parame-
ters shown in Table 3 generates the through-
put curve shown in Figure 4. For comparison,
results from a TPC-C benchmark run on our
experimental test bed (the “real system”) are
presented as well. To show the initial portion
of the curve more clearly, only half the trans-
actions (roughly 100 thousand) of the trace
were used to produce this particular plot. Both
the simulator and the real system complete the
same number of transactions in this test. For
the simulated results, throughput is expressed
in terms of Transactions Finished per Interval.
The interval used is 1

30
of the run time. For

the real system, the interval used is 30 seconds
which is also 1

30
of the run time. Because the

real system and the simulator achieve a similar
peak throughput as the buffer pool fills up and
then fall to a similar stable value as the man-
agement algorithm kicks in, these two through-
put curves are considered similar.

Other verification was performed. For exam-
ple, after the system throughput becomes sta-
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Figure 4: Simulation vs. Measurement
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Figure 7: Faster Disk

ble, the percentage of dirty pages in the buffer
pool of the simulator is 91%, which is close
to the measurement result of 85%. The buffer
pool hit ratio from simulation is 96.8%, which is
also close to the measurement result of 96.5%.

6 Experimental Results

6.1 Effect of CPU and Disk Speed

Two experiments were performed to determine
the extent to which device speeds affect per-
formance, one with a much faster disk and the
other with a much faster CPU. To focus on
the change in throughput at the beginning, a
shorter trace is used. Figure 5 shows the result
for the original parameters. Figures 6 and 7
show the results for a faster CPU and a faster
disk, respectively.

These results indicate that disk speed is more

important to DB2 than CPU speed. With a
faster disk (5 times faster), the system runs
faster (in this case it spends 1

5
the time to com-

plete all transactions), but with a faster CPU
(10 times faster), the performance is the same
as the original test. This indicates that the sys-
tem is likely I/O bound.

6.2 Analysis of the Dirty Page
Distribution and I/O
Activities

In the experiments performed in this subsec-
tion, the default configuration of DB2 (the
number of page cleaners is 2, and the dirty
page threshold is 60%) was used. Figure 4
shows that the stable throughput is lower than
the peak throughput under this configuration.
We carried out a series of experiments to de-
termine how various factors of the buffer pool
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contribute to performance.

During the verification, we found that 87%
of the pages in the buffer pool are dirty, which
seems high. This motivated more experiments
on the page distribution in the buffer pool. Fig-
ure 8 shows the evolution of pages in the buffer
pool over the course of the simulation. Also
shown on this graph is the (scaled) through-
put (finished transactions per interval×20). At
the beginning, all pages in the buffer pool are
free pages. Both the number of dirty pages and
the number of clean pages increase as time goes
on. After the buffer pool is full, the number of
dirty pages continues to increase, but the num-
ber of clean pages drops. At the same time, the
throughput drops as well. At last, when 87% of
the buffer pool pages are dirty, the system en-
ters a steady state. The number of dirty pages
at this point is much higher than it is when
the buffer pool is just full, implying that there
are too many dirty pages in the buffer pool.
Therefore, the effect of the dirty page thresh-
old, which is used to control the percentage of
dirty pages in the buffer pool, was subjected to
further testing.
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Figure 8: Pages in the Buffer Pool

Different dirty page threshold values are
tested in both the simulator and DB2. The re-
sults show that the percentages of dirty pages
are nearly the same regardless of the value of
the threshold. This indicates that in the TPC-
C workload, the threshold alone cannot effec-
tively control the percentage of dirty pages.

To investigate the reason of this observation,
the I/O activities of the buffer pool were ex-
amined in more detail. The results are shown

in Figure 9. We can see that the total I/O
bandwidth is constant, and is shared by reads,
synchronous writes, and asynchronous writes.
The read speed is consistent with the through-
put of the system. In an OLTP environment,
the faster transactions are processed, the faster
read requests arrive, and the faster the pages
are modified.

0

5000

10000

15000

20000

25000

30000

35000

0 5 10 15 20 25 30

N
um

be
r

Simulated Time (in minutes)

Number of dirty pages/3
Number of I/O operations

Number of reads
Number of asynchronous writes

Number of synchronous writes

Figure 9: I/O Activities of the Buffer Pool

When the buffer pool is full, page clean-
ers begin to clean out dirty pages by asyn-
chronous writes. However, asynchronous writes
cannot clean out pages fast enough, and so
dirty pages must be selected for replacement.
Therefore, synchronous writes occur. The syn-
chronous writes not only delay the reads di-
rectly (since a read cannot proceed before the
synchronous write finishes), but also compete
with other activities for I/O bandwidth. There-
fore, the read speed is slowed down by the need
to write in order to create space for the in-
coming pages. When the read speed becomes
slower, the throughput drops, and dirty pages
are generated more slowly. When the number
of dirty pages generated by TPC-C equals the
number of dirty pages cleaned by writes in the
same time interval, the system enters a steady
state.

As shown in Figure 9, the number of syn-
chronous writes is high. The existence of too
many synchronous writes impacts throughput.
The number of asynchronous writes should be
increased in order to decrease the number of
synchronous writes. To do this, the aggregate
page cleaning speed must be increased.
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6.3 The Impact of More Page
Cleaners

The aggregate page cleaning speed can be in-
creased if more page cleaners are used. The
default number of page cleaners is 2. Figure 10
shows that with 50 page cleaners, the through-
put increases. Figure 11 shows the I/O ac-
tivities and the number of dirty pages when
the number of page cleaners is 50. There are
nearly no synchronous writes left. The number
of dirty pages also drops significantly.
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Figure 11: I/O Activities for 50 Page Cleaners

Figure 12 illustrates the throughput and
dirty page percentage under different numbers
of page cleaners. Increasing the number of
page cleaners reduces both the percentage of
dirty pages and the percentage of synchronous
writes. Up to 50 page cleaners, throughput is
improved with more cleaning. After that point,
however, throughput drops sharply as putting

more page cleaners to work is unable to improve
performance. The selection of the appropriate
number of page cleaners is clearly important in
tuning such a system. Similar tests on the DB2
test bed show similar results as Figure 12.
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Figure 12: Effect of Multiple Page Cleaners

The page cleaning speed has an upper limit,
which is achieved when all page cleaners are
busy. However, the read speed has no upper
limit; reads are aggressive in the TPC-C bench-
mark, i.e., they will consume all available disk
I/O bandwidth. If the upper limit of the page
cleaning speed is too low, reading can be slowed
down only by synchronous writes. This is the
situation with the default configuration. In-
creasing the number of page cleaners can in-
crease the upper bound of the page cleaning
speed. Therefore, it can decrease synchronous
writes and increase throughput.

7 Self-tuning Algorithm for
Page Cleaning

The above experiments show that selecting an
appropriate number of page cleaners is impor-
tant to the performance. However, different
workloads need different number of page clean-
ers, and tuning such a parameter requires many
experiments. To overcome this problem, a self-
tuning page cleaning algorithm was developed.
The objective of this algorithm is to eliminate
the number of synchronous writes and limit the
number of dirty pages by adjusting the disk I/O
bandwidth occupied by page cleaning dynami-
cally.
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A parameter AioP is introduced to con-
trol the disk I/O bandwidth occupied by page
cleaning. The range of AioP is [0,1]. Its value
indicates the expected proportions of pending
asynchronous writes in the total pending I/O
requests. If the proportion of pending asyn-
chronous writes is below AioP, the page clean-
ers will send out more asynchronous writes
to disks. Whenever this proportion is above
AioP, the page cleaners will stop sending any
more asynchronous writes to disks, and resume
cleaning only after the proportion is less than
AioP. In this way, the AioP controls the disk
I/O bandwidth occupied by page cleaning. The
bigger the AioP value, the more disk I/O band-
width is occupied by page cleaning. The initial
value of AioP can be any value between 0 and
1. Its value is adjusted based on the status of
the buffer pool periodically. Before describing
this algorithm, some notation is introduced:

• T : total number of pending I/O requests
in the whole buffer pool.

• A: current number of pending asyn-
chronous writes in the whole buffer pool.

• S: current number of pending synchronous
writes in the whole buffer pool.

• δd↑, δd↓, δs: scale parameters needed for
this self-tuning algorithm (7.5 is used for
all these parameters in the simulation ex-
periments in this paper).

• I : the time interval that the page cleaner
adjusts its parameters. The value used
currently is 10 times of the disk access
time.

• Di: proportion of dirty pages in the buffer
pool on the ith check interval.

• t: time.

The page cleaning control mechanism is:

1. When a page cleaner is started in response
to a page cleaning event, it collects some
pages for cleaning.

2. Send out n pages for cleaning, where n =
AioP∗T−A

1−AioP
. This lets the proportion of

pending asynchronous writes reach AioP .

3. Whenever an asynchronous write finishes,
the page cleaner performs the following
check:

(a) if A

T
< AioP , send out asynchronous

writes until A

T
= AioP .

(b) if A

T
≥ AioP , do not send out new

requests, but re-check this when the
next asynchronous write finishes.

If the current interval is n, the adjustment
is:

if (Dn > Dn−1) // more dirty pages

AioP ← AioP (1 + δd↑
Dn−Dn−1

Dn−1

+ δsS),

else // less dirty pages

AioP ← AioP (1 + δd↓
Dn−Dn−1

Dn−1

+ δsS),

if AioP < 0, AioP ← 0;
if AioP > 1, AioP ← 1.

There are two terms in the adjustment. The
first term, δd

Dn−Dn−1

Dn−1

, is based on the change

in dirty pages. The δd↑ and δd↓ are used to am-
plify this change. If the number of dirty pages
drops, which means the page cleaning is too
fast, AioP will also drop in order to decrease
the page cleaning speed; if the number of dirty
pages increases, which means the page clean-
ing is too slow, AioP will also increase in order
to increase the page cleaning speed. The sec-
ond term, δsS, is used to eliminate synchronous
writes. If there are many synchronous writes,
AioP will increase. When the number of dirty
pages does not change, and there are no syn-
chronous writes in the buffer pool, the system
is in a desirable steady state, and AioP does
not change. If Dn and S keep changing, the
AioP will also keep adjusting. Because this
self-tuning algorithm does not depend on any
workload specific characteristics, it is expected
to be useful under various workloads.

8 Test Results of the Self-
Tuning Algorithm

8.1 Simulation Results

The simulation results of the self-tuning algo-
rithm are presented in this section. Figure 13
shows the throughput of the self-tuning algo-
rithm and the old algorithm. The through-
put of the self-tuning algorithm is higher than
the old algorithm. Figure 14 compares the
number of dirty pages. The number of dirty
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pages decreases from 91% to 69% under the
self-tuning algorithm. The values of AioP
which is scaled by a factor of 50,000 is also
shown in Figure 14. The horizontal line in
Figure 14 shows the maximum possible value
of the AioP. The initial value of AioP is 0,
and it is adjusted during the running. Fig-
ure 15 shows the I/O activities. Compare to
Figure 9, the self-tuning algorithm successfully
eliminates synchronous writes. The through-
put comparison is shown in Table 4. The av-
erage throughput includes only the throughput
after the performance drop. The self-tuning al-
gorithm achieves a similar throughput as the
hand-tuned system (the number of page clean-
ers is 50). Both of them have 15% higher
throughput than the system under default con-
figuration.
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Figure 13: Throughput comparison
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Figure 14: Dirty pages comparison and AioP
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Figure 15: I/O Activities of the Self-tuning Al-
gorithm

Table 4: Comparison of the average throughput
and the C.O.V.

Throughput C.O.V.
Old algorithm
(2 cleaners)

1471.2 0.026

Old algorithm
(50 cleaners)

1669.0 0.024

Self-tuning algorithm 1691.6 0.043

8.2 Experiment Results

The self-tuning algorithm was implemented in
DB2 version 7.1 and tested on systems with two
different configurations. The small system con-
tains a 50-warehouse TPC-C database span-
ning over 7 disks. The medium system con-
tains a 300-warehouse TPC-C database span-
ning over 70 disks. The TPC-C benchmark was
used as the workload. The experiment results
on these two systems are presented in this sec-
tion.

Figure 16 shows the throughput of the small
system (50-warehouse TPC-C database) under
the old algorithm with different number of page
cleaners. Because the throughput with 50 page
cleaners has big variance, the throughput with
16 page cleaners is selected as baseline. Table 5
shows the average TPM under different number
of page cleaners and their comparison with the
baseline throughput. The ratio column in the
table means the ratio of the TPM to the TPM
selected as baseline.

For the new algorithm, there are four param-
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Figure 16: Small System: TPM of the Old Algo-
rithm

Table 5: Small System: Average TPM of the Old
Algorithm

# Page Cleaners Average TPM Ratio
50 2487.0 1.09

16 (Baseline) 2280.3 1.00
2 2177.7 0.96

eters: δd↑, δd↓, δs, and I . During these ex-
periments, the I is always set to 100ms which
is about 10 times of the average disk access
time. It was found that there is almost no syn-
chronous write even when δs = 0. Therefore,
δs is set to 0 in the experiments. The exper-
iments showed that with more than one page
cleaner, the throughput is bursty and normally
not as good as the throughput with one page
cleaner. Therefore, only results with one page
cleaner are discussed here.

For a bigger δd↑/δd↓ value, the AioP will be
adjusted faster, and for a smaller value, the
AioP will be adjusted slower. However, the
throughput is not sensitive to the parameters.
Some results are shown in Figure 17. The pa-
rameter values are represented as a pair (δd↑,
δd↓). The performance of the self-tuning algo-
rithm is better than the baseline, although it is
more bursty.

The throughput under the old algorithm
with different number of page cleaners for
the medium system (300-warehouse TPC-C
database) is shown in Figure 18. Because the
number of disks accessed in the system is 70, 70
page cleaners are used as one of the test case.
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Figure 17: Small System: TPM of the New Algo-
rithm

Table 6: Small System: Average TPM of the New
Algorithm

(δd↑, δd↓) Average TPM Ratio
(20, 20) 2554.5 1.12
(1, 2) 2506.3 1.10
(3, 6) 2497.8 1.10

(10, 10) 2478.3 1.09
Baseline 2280.3 1.00

The average TPM is shown in Table 7. The old
algorithm with 16 page cleaners is selected as
baseline.
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Figure 18: Medium System: TPM of the Old Al-
gorithm

Figure 19 shows the throughput under the
new algorithm. Table 8 is the average through-
put. Under the self-tuning algorithm, the sys-
tem throughput is comparable to the hand-
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Table 7: Medium System: Average TPM
# of Page Cleaners Average TPM Ratio

70 6458.8 1.00
16 (Baseline) 6455.4 1.00

2 5804.1 0.90

Table 8: Medium System: Average TPM
(δd↑, δd↓) Average TPM Ratio

16 (Baseline) 6455.4 1.000
(20, 20) 6383.9 0.989
(10, 10) 6373.8 0.987

tuned system.
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Figure 19: Medium System: TPM of the New Al-
gorithm

9 Conclusions and Future
Work

Buffer pool management is important to the
performance of a DBMS. Some elements of
the buffer pool management algorithm of DB2
were analyzed by trace-driven simulation, us-
ing traces captured from running the TPC-C
benchmark. The effects of different parameters
of the buffer pool were tested, and the I/O ac-
tivities of the buffer pool were examined. Un-
der the default configuration, although all page
cleaners keep busy during the running period,
dirty pages still make up more than 85% of the
buffer pool. The results from further simula-
tion experiments suggest that for this workload

the default number of page cleaners are insuffi-
cient to clean out dirty pages fast enough, and
synchronous writes have to be applied as a re-
sult. Throughput is impacted negatively by the
need to wait on synchronous writes. The aggre-
gate page cleaning speed can be increased by
increasing the number of page cleaners. How-
ever, the selection of an approperiate number
of page cleaners is not easy. The approperiate
number of page cleaners may vary when the
workload changes.

A self-tuning page cleaning algorithm was
developed to overcome this problem. In this
self-tuning approach, only one page cleaner
is needed, and the page cleaning throughput
can be adjusted automatically. Simulation and
measurement results showed that the system
performance under this self-tuning algorithm is
comparable to a hand-tuned system.

Due to the complexity of the buffer pool
management algorithm, the configuration and
tune of the DBMS buffer pool is a complex
task. Self-tuning approaches can help the con-
figing and tuning of the system. The future
work includes applying the self-tuning princi-
ple to other parts of the buffer pool algorithm
and testing the effect in both the simulator and
the real system.
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