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Abstract

Storage management is important to the performance of DBMS. This paper gives a comprehensive
overview of storage management in relational DBMS. The storage management is divided into three
levels (logical, physical in-memory, and physical on-disk) and discussed separately. The logical level
caches logical units (tuples or index values) of the DBMS based on the logical information to improve
buffer pool usage efficiency. The physical in-memory level caches physical pages directly in the buffer pool
to reduce disk accesses. Many algorithms have been designed for the general buffer or for the buffer pool
of DBMS. Complex algorithms can achieve better performance than simple LRU or CLOCK algorithms.
However, the overhead is high and the advantage diminishes when the buffer is big. The physical on-disk
level borrows many techniques from file systems and storage systems. Because of the excellent potential
write performance of log-structured organization, the Log-structured File System and related topics are
discussed. Each level has its advantage and limitation for further improving performance. To achieve
better performance of storage management systems of DBMS, all these three levels should be considered.

1 Introduction

In relational Database Management Systems (DBMS1), the database is placed on secondary storage (disk).
When the data in the database are required, they need to be read into memory and may be written back
to disk if updated. The data must be organized on the disk for efficient accessing. In order to increase the
efficiency of storage management, part of memory is used to cache some of these data. The management of
data on disk and in memory belongs to the storage management of DBMS.

The disk access is the bottleneck of the database system in many workloads, because the access time
of disk is several magnitudes longer than that of memory. The objective of storage management is to
improve the efficiency of disk access, therefore to improve the performance of the whole system. The storage
management can be divided into three levels:

1. Logical level is the higher level. In this level, the logical information of the DBMS is used to optimize
the data stored in memory. Not much research work is on this level and many DBMSs do not have
this level in their storage management.

2. Physical in-memory level is the middle level. In this level, the popular database pages are cached
in the in-memory space buffer pool. The buffer pool can absorb most requests to the disk therefore
reduce the number of disk accesses. This approach is used in almost all DBMSs and has important
effects on their performance. There are many studies about the general buffer management and the
buffer pool management in DBMS.

1DBMS refers to relational DBMS in this paper unless otherwise stated
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3. Physical on-disk level is the lower level. The layout of database data and meta-data on the disk
is studied to improve the disk I/O efficiency. It can be further divided into two sub-levels: software
level and disk level. In the software level, the on-disk data structure and data placement strategy are
designed based on the logical structure of data. This area has been studied intensively in the design of
file systems. In the disk level, the logical structure of data is not considered. Instead, only the physical
nature of disk is utilized to improve the disk I/O. This area has been studied in the design of storage
systems (e.g. RAID systems).

This survey gives a comprehensive overview to important techniques used in or related to storage man-
agement in DBMS. First the typical workloads of DBMS are introduced in § 2. The three levels of storage
management are discussed after that. The physical in-memory is discussed first in § 3. The physical on-disk
level is discussed in § 4. The logical level is discussed in § 5. § 6 is the conclusion.

2 Typical Workloads of DBMS

The workloads of DBMS applications show diversity due to the application of DBMS in different areas.
Important workloads can be categorized into three typical types: OLTP (On-Line Transaction Processing),
OLAP (On-Line Analytical Processing), and their combination. The Transaction Processing Performance
Council (TPC)2 is a non-profit corporation founded to define transaction processing and database bench-
marks. The TPC benchmarks are widely used for testing database performance. These typical workloads
and their corresponding TPC benchmarks are briefly discussed in this section.

2.1 On-Line Transaction Processing (OLTP)

In the OLTP workload, most transactions are simple queries. The execution time of each transaction is short
(can be tens of milliseconds or shorter). Many users access the database at the same time. The database is
updated frequently. Examples of the OLTP workload are air tickets ordering system and ATM for banks.

The TPC-C benchmark is often used to test the performance of DBMS on the OLTP workload. It consists
of a mixture of read-only and update intensive transactions that simulate the activities found in complex
OLTP application environments. The performance metric reported by TPC-C is a “business throughput”,
measuring the number of “orders” processed per minute. Multiple transactions are used to simulate the
business activity of processing an order, and each transaction is subject to a response time constraint. There
are five kinds of transactions in the TPC-C benchmark, which are listed in Table 1.

Name Characteristic Percentage
New-Order read-write, mid-weight 45%
Payment read-write, light-weight 43%

Order-Status read-only, mid-weight 4%
Delivery read-write 4%

New-Order read-only 4%

Table 1: TPC-C Transactions

Because the New-Order transaction is the backbone of the workload, the performance metric of the
TPC-C benchmark is expressed in Transactions Per Minute (TPM), which is the number of New-Order
transactions executed per minute. The size of the TPC-C database is given by the number of “warehouses”
defined. There are about 100M bytes of data for one warehouse.

2.2 On-Line Analysis Processing (OLAP)

In the OLAP workload, many complex queries are used to query large amount of data in the database for
decision support. The execution time of each query is long (from tens of seconds to hours). Normally only
one user is running the query. The queries mainly read the database without updating.

2http://www.tpc.org
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The TPC-D benchmark is used to model the OLAP workload. However, it is obsolete and has been split
into two benchmarks TPC-R and TPC-H. If the types of queries are known ahead of time, some optimization
techniques such as the AST (Automatic Summary Table) tables can be used to speed up the query greatly.
The TPC-R benchmark (R for business Reporting) models this type of workload. If the types of queries
are not known ahead of time, optimization techniques like AST cannot be used. The TPC-H benchmark (H
stands for ad-Hoc queries) simulates this workload.

The performance metric reported by TPC-H is called the TPC-H Composite Query-per-Hour Performance
Metric (QphH@Size), and reflects multiple aspects of the capability of the system to process queries. These
aspects include the selected database size against which the queries are executed, the query processing power
when queries are submitted by a single stream, and the query throughput when queries are submitted by
multiple concurrent users. Similarly, the performance metric reported by TPC-R is called QphR@Size.

2.3 Mixing OLTP and OLAP

Some real workloads has been analyzed and compared with the TPC-C and TPC-D benchmark [23, 24].
It was found that many characteristics of the real workloads can be represented by TPC-C and TPC-D.
However, the real workloads show both type of characteristics, and their characteristics change over time.

In transactional e-commerce applications, both OLTP and OLAP workload exist. Users of these ap-
plications can buy or browse products through network. When users buy products, they generate OLTP
workload. When users browse products (say, search the top 10 hottest products), the workload generated is
OLAP like. Normally the management and tuning of DBMS for OLTP and OLAP are different. When these
two types of workloads occur together, it is challenging for the tuning of DBMS. The TPC-W benchmark
simulates this workload.

3 Physical In-memory Level – Buffer Pool Management

The physical in-memory level of the storage management caches disk pages in an in-memory buffer called
buffer pool without knowing the logical structures of the pages. This level is call buffer pool management
conventionally. The objective of buffer pool management is to reduce the page miss ratio thus reduce number
of disk accesses.

The buffer pool management in DBMS is similar to many other buffer (CPU cache, virtual memory,
file system buffer, etc.) management strategies. In all these buffer management systems, there is a speed
gap between the buffer and the lower level storage. The access to the buffer is much faster than the access
to lower level storage. However, the buffer is more expensive than the lower level storage. Because of the
locality of references to the data, popular data can be kept in a small buffer. It is likely that the data can
be found in the buffer when they are needed. Therefore, the overall access time is close to the buffer access
time, while the overall cost per storage unit is close to the lower level storage.

Some general buffer replacement algorithms can be used in the buffer pool management of DBMS because
of the similarity of all buffer management algorithms. These general algorithms are discussed in § 3.1. The
reference behaviour of DBMS buffer pool has its own properties. In order to design proper replacement
algorithms for buffer pool, the reference behaviour of DBMS applications were studied in many works. This
part is discussed in § 3.2. Many buffer pool replacement algorithms are designed based on the reference
pattern of DBMS. Some representative algorithms of them are discussed in § 3.3.

3.1 General Buffer Management

3.1.1 Basic replacement algorithms

The basic replacement algorithms that have been considered in the literature include LRU (least recently
used), FIFO (first-in-first-out), CLOCK, and LFU (least frequently used).

The LRU algorithm replaces the page in memory that has not been referenced for the longest time. By
the principle of locality, this should be the page least likely to be referenced in the near future. The LRU
algorithm is very simple and shows good performance in many cases. However, because it need to update
the recency information on each reference, the overhead of LRU is unacceptable when the buffer is managed
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by or partly by hardware (e.g. CPU cache and virtual memory). In DBMS, the buffer pool is managed by
software, and the overhead of LRU is acceptable. In old version of DB2, the LRU was used as the buffer
pool replacement algorithm [56]. A variation of LRU is also used in the ADABAS [47]. Whenever the LRU
queue is updated, it need to be latched, which occurs on every page reference. Because there are many users
accessing the database at the same time, the LRU queue latch can become a bottleneck. Multiple LRU
queues are used in ADABAS to reduce the latch contentions on the LRU queue. These LRU queues are
accessed in a round robin manner. When searching an LRU queue, only this queue is latched.

The FIFO policy replaces the page that has been in memory the longest. It is easy to implement and
has low overhead but performs relatively poorly than the LRU policy. This is because the hot pages will be
replaced from the buffer periodically.

The CLOCK algorithm is derived from the FIFO algorithm and is an approximation of the LRU algo-
rithm. In this algorithm, a reference bit is associated with every page. When the page is referenced, its use
bit is set to 1. All pages in the buffer are organized into a circular queue. A clock pointer is associated
with the circular queue. When a replacement is needed, the clock pointer will go through the buffer in one
direction from the last position until finding a page with reference bit 0. All pages scanned by the clock
pointer have their reference bit set to 0. The CLOCK policy has similar overhead as the FIFO policy but
approximate the performance of LRU.

The LFU policy replaces the page in memory that has been referenced the least times. A problem of
the LFU algorithm is that some pages may build very high reference frequency and can not be replaced.
There are some variations of the LFU algorithm to overcome its problem (LFU∗, LFU-Aging, LFU∗-Aging)
[25, 61, 1]. The high overhead of LFU also limits its application. The CLOCK algorithm can be modified
to approximate LFU, if there are several reference bits, and they are increased by 1 on every reference.
Linux uses this algorithm to manage its virtual memory [15]. Algorithms that consider both recency and
frequency can achieve better performance. The algorithm LRFU that combines the LRU and LFU shows
good performance [29]. This algorithm will be discussed below.

3.1.2 More sophisticated algorithms

GCLOCK and DGCLOCK

There are several variations of the basic CLOCK algorithm [16]. In the GCLOCK (Generalized CLOCK)
algorithm, each page in the buffer is assigned a reference counter. There are different variations of GCLOCK
algorithm based on how the reference counter is updated. When a page is brought into the buffer, an
initial value (weight) is assigned to the counter of that page. The weights may be different for different
data types. On a buffer page hit, the counter associated with that page is reset (not necessarily to the
initial count) or incremented. On a page miss, a circulating clock pointer sweeps through the buffer pages
decrementing their counters until a page with a count of zero is found. The GCLOCK algorithm can be
refined to DGCLOCK in which dynamically calculated, page-related weights are assigned. The GCLOCK
and DGCLOCK algorithm are flexible due to their various versions and parameters. Optimal parameter
values are difficult to determine and have to be tailored to a specific DBMS and specific applications.
Because of its tuning ability, the GCLOCK algorithm was used in the Starburst project [22]. When proper
weights are used for special reference patterns, better performance than LRU can be achieved. However, in
complex situations that the parameters are hard to tune, its performance is not as good as LRU.

The GCLOCK algorithm is further studied in [38]. An approximate analytical model under the Indepen-
dent Reference Model (IRM) is developed. The model is applied to a case similar to the TPC-A benchmark.
It is found that with equal weights assigned to all partitions, the performance of the GCLOCK algorithm
approaches that of the LRU algorithm as the weight is increased. The higher the weight, the closer the
GCLOCK algorithm to the LRU algorithm. The reason is that when hot pages are re-referenced, their
weights can be reset to a high value, and these are not replaced in the next clock sweep.

Another strategy presented in [38] assigns different weights to different partitions of data, when the
information about the access skewness is used. The objective of this strategy is that the colder partition is
given a lower priority than the hotter partitions. The simulation and analysis results show that the overall
buffer hit probability is better than that of the LRU algorithm if weights are properly assigned. The optimal
allocation is to load as much as the hottest partition in the buffer, and as much as the second hottest partition
in the rest buffer spaces, and this allocation continues until the buffer is filled up and a partition is allocated
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less space than its size. To achieve this allocation, the last partition, which is partly in memory, requires
a higher weight. The other hotter and colder partitions need a smaller weight. By assigning appropriate
weight to different partitions based on buffer size and partition characteristics, the hit ratio of the GCLOCK
algorithm can be very close to the optimal algorithm. In order to set optimal weights for this algorithm in
practical environments, both the access skew and the buffer size need to be known in advance. However,
the skewness of data is hard to analysis and it can change over time. Therefore, selecting optimal weight
values is not easy in real world. If the skewness of the data can be detected on-line, the on-line tuning can
be used to improve the performance. However, this could be difficult, as stated in [28]: “looking for data
base reference chanracteristics in a raw database reference string is like looking for the structure of eggs in
a plate of scrambled eggs”, because the interleaving of transaction references would obscure the database
reference characteristics.

LRU-K

LRU-K is a replacement algorithm proposed in [39]. The basic idea of LRU-K is to keep track of the times of
the last K references to popular pages, and use this information to predict future references. Recording the
last K references can overcome a problem of the LRU algorithm: LRU does not discriminate well between
frequently and infrequently referenced pages, and once a page is brought in, a long buffer life is guaranteed.
In the LRU-K algorithm, the page whose last (k+1)st reference is the oldest will be selected for replacement.
When K=1, LRU-K degrades to the LRU algorithm.

In [39], this algorithm was tailored to DBMS after defining two parameters: Correlated Reference Period
and Retained Information Period. After pages are brought into memory and within the correlated reference
period, the system should not drop a page immediately after its first reference. At the same time, successive
references to this page within the correlated reference period are not recorded as the referencing history
of this page, because these references may be correlated. The referencing history of pages are retained no
matter these pages are in memory or not if the current time is within the Retained Information Period since
the most recent access of these pages.

Simulation experiments were performed on synthetic traces and an OLTP trace. It was shown that when
K>2, LRU-K is slightly better than LRU-2, but is less responsive than LRU-2 in the sense that it needs
more references to adapt itself to dynamic changes of reference frequencies. Therefore, the authors advocated
LRU-2 as a generally efficient policy. The simulation results showed that when the buffer pool is very small,
LRU-K is superior to LRU and LFU. However, when the buffer pool is big enough that the hit ratio is more
than 38%, the hit ratio difference becomes insignificant. In modern DBMS systems, normally the buffer
pool size is big enough that the hit ratio is above 90%. Whether LRU-2 can show significant improvement
when the hit ratio is high is not tested in this paper. The overhead of LRU-2 is quite big: each page access
requires log N work to manipulate a priority queue where N is the number of pages in the buffer [26].

2Q

To decrease the overhead of the LRU-2 algorithm, a 2Q (Two Queue) replacement algorithm was proposed
[26]. This algorithm has constant time overhead, performs as well as LRU-2, and requires no tuning. The
2Q algorithm uses the same principle of the LRU-2. It not only keeps the last reference to a page, but also
keeps the second-last reference. On the first reference to a page, 2Q places it in a special buffer, the A1
queue, which is managed as a FIFO queue. The A1 queue is partitioned into A1in and A1out. The most
recent first accesses will be in the memory (up to a certain threshold), which is in the A1in queue. When
the A1in queue is full, the older pages in the A1in queue will be thrown out of memory but their header
information is remembered in the A1out queue. The size of the A1out queue has the similar effect as the
Retained Information Period of the LRU-K algorithm. If the page is re-referenced when it is in the A1in
queue, nothing happens, because the second access may simply be a correlated reference. When the page
is re-referenced when it is in the A1out queue, it is moved to the Am queue, which is managed as an LRU
queue. The size of the A1in queue has the similar effect as the Correlated Reference Period of the LRU-K.
When pages in the Am queue are replaced, they are not remembered in the A1out queue because they have
not been referenced for a while. When the size of A1in queue is 25% of the buffer size and the size of A1out
queue is 50% of the buffer size, the algorithm works well.
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Several simulation experiments were performed on synthetic traces and real traces. They showed that
2Q provides a few percent improvement over LRU for synthetic traces and real traces including an OLTP
trace. It was also shown that the hit rate of 2Q suffers less than the hit rate of LRU when workloads not
suitable for LRU exist. When the buffer hit rate is high (more than 70%), the improvement of 2Q over LRU
is less than 1%.

SEQ

LRU performs well in common cases, but performs badly in some cases (e.g. when a loop which is bigger than
the buffer size exists). Several algorithms (SEQ [19], EELRU [52]) are designed to overcome this problem.

The intuition behind the SEQ replacement algorithm is to detect long sequences of page faults and
apply MRU replacement to such sequences. The key point of the SEQ algorithm is how to detect and
manage sequences on-the-fly. Only a series of page faults to consecutive virtual addresses is considered as a
sequence. Therefore, the loop access to arrays is a sequence. However, loop access to linked lists or trees are
not considered as sequences because the consecutive items in such data structures do not necessarily have
consecutive virtual addresses. Therefore, only part of loop access can be detected. The SEQ algorithm keeps
trace of many sequences detected (say, 200). Only sequences of length greater than a threshold (currently 20
pages) are replaced by MRU. Simulation results show that SEQ performs significantly better than LRU and
quite close to optimal for applications with clear access patterns. For other applications, the performance of
SEQ is similar to LRU.

EELRU

The EELRU algorithm [52] was designed to overcome the problem that LRU cannot process big looping
behaviour well. It uses only the recency information of LRU. Recency information of pages that have been
evicted is also maintained. An early eviction point is used in the LRU chain. Pages can be evicted either from
the early eviction point or the end of the LRU chain. A benefit function is defined to express the benefit for
evicting pages from an early eviction point. The location of the early eviction point is computed dynamically
based on the benefit function. In common situations where LRU is good, EELRU is also good because it
behaves like LRU. In common worst cases for LRU, EELRU is significantly better. This algorithm shows
good performance for loops bigger than the buffer size. In the worst cases, EELRU is at most a constant
factor worse that LRU. In most cases, EELRU is better than LRU.

LRFU

The idea of the LRFU (Least Recently/Frequently Used) algorithm [29] is to consider both the recency and
frequency information of past references when making replacement decisions. Therefore, it is a combination
of the LRU and LFU algorithms. This algorithm records the recency and frequency information of the
reference to the page through the CRF (Combined Recency and Frequency) value which is associated to
each page in the buffer. A recent reference to a page has a higher weight in the CRF value than an older
reference. This CRF value is directly used to select victim pages. A parameter λ is used to control the CRF
value. When λ changes between 0 and 1, the algorithm can behave between LRU and LFU.

Several simulation experiments were performed on file system traces, database traces, and OLTP traces.
Simulation results show that LRFU has better hit ratio than LRU-2, 2Q, and LRU algorithm when the
buffer size is small. Proper implementation of this algorithm only has small overhead.

This algorithm was implemented in FreeBSD and showed better performance than the LRU algorithm.
When the buffer size is very large, the hit ratio difference between different algorithms becomes very small.
However, due to the huge penalty of physical disk I/Os, a slight increase in the hit ratio results in a
considerable improvement on the throughput. In the FreeBSD tests, when the cache size is 100 pages, the
hit rate difference between the LRU and the LRFU is less than 0.5%, but this leads to more than a 4%
difference in throughput.

The optimal value of parameter λ is different for different workloads. A preliminary self-adapting λ
algorithm is proposed. Under this algorithm, the λ is adjusted periodically based on the change of the buffer
hit ratio. If the hit ratio of period i is better than that of period i − 1 and the λ value increased, the λ
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is incremented. On the other hand, if the hit ratio decreased from period i − 1 to period i, and the λ is
increased, the λ is decreased.

Cache Partitioning

All algorithms discussed above are global algorithms. In these algorithms, the buffer is considered as one
entity. Therefore, the pages in the whole buffer are considered when selecting a replacement. Another scheme
is called partitioning, in which the buffer consists of several partitions. When a page is needed, only pages
in the same partition is considered for replacement. Therefore, the behaviour of one partition will not affect
other partitions. In [55], a model for studying the optimal allocation of cache memory among two or more
partitions is developed. It shows that the optimal fixed allocation of cache among two or more partitions is an
allocation for which the miss-rate derivative with respect to cache size is equal for all partitions. The paper
also studies the transient in buffer management when program behaviour changes. When program behavior
changes, the LRU algorithm moves quickly toward the steady-state allocation if it is far from optimal, but
converges slowly as the allocation approaches the steady-state allocation.

An adaptive algorithm for managing fully associative cache memories shared by several identifiable pro-
cesses is proposed in [57]. This algorithm partitions the cache in disjoint blocks whose sizes are determined
by the locality of the processes accessing the cache. When the optimum partition is reached, the frequency-
weighted miss rate derivatives of all processes with respect to cache size are identical. The frequency-weighted
miss rate when the cache size is i is approximated by the difference between the number of misses of a process
in cache size i and the number of misses of this process in cache size i+1. To measure the history of a process
and to adapt the change of the characteristics, the past intervals are weighted by factors that diminish by
powers of a parameter Cr. Each partition is managed by LRU. This partition algorithm can achieve 1-2%
better performance than LRU. When the disk load is heavy, the response time can improve significantly.

3.1.3 Algorithms with application level hints

Application controlled caching

Because the workloads in computer systems or DBMS are very diversified, it is hard to find a universal
replacement algorithm that is good in all cases. Application controlled caching [4] is proposed to overcome
this problem. This approach can apply application-specific knowledge to improve file cache performance. It
is implemented by a two-level cache management strategy. The kernel allocate blocks to processes. Each
process can submit its prefetches in batches, assign priorities to their own files or file blocks, and for each
priority level, to specify file cache replacement policies.

The measurements showed that this technique can greatly improve the performance of the file system.
The running time is reduced by 3% to 49% (average 26%) for single-process workloads and by 5% to 76%
(average 32%) for multiprocess workloads.

The application that uses this approach must be modified to inform the file system to select proper
replacement policies and prefetch data. This may not be feasible for some applications.

Detecting reference patterns on-line

An adaptive block management scheme DEAR (Detection based Adaptive Replacement) is proposed in [8].
More discussion and measurements about this algorithm can be found in [9]. Unlike Cao’s approach, the
DEAR scheme detects the reference pattern of an application on-line. Sequential reference, looping reference,
temporal localized reference, and probabilistic reference can be detected from the frequencies, backward
distances and forward distances of page references. The MRU algorithm is applied to the sequencial and
looping reference. The LRU algorithm is applied to the temporal localized reference. The LFU algorithm
is applied to the probabilistic reference. The buffer manager consists of two modules: Application Cache
Manager (ACM) and System Cache Manager (SCM). An ACM is allocated to each application. It gathers
block attributes and detects the reference patterns periodically. The SCM takes charge of block allocation,
list management, and the sending of replacement requests to ACMs when necessary. When a buffer space is
needed, the SCM selects an ACM to send a replacement request based on a simple heuristic. This heuristic
tries to minimize the cost for replacing a page.
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Simulation results show that the DEAR always performs better than LRU for single application and
multiple applications. Although the overhead of DEAR is higher than LRU, the saved IO cost of DEAR can
compensate this overhead when the buffer is small.

In both the application controlled caching and the DEAR algorithm, the reference pattern is simple
for each file, because references to a file are normally from one process. If a file is shared by many pro-
cesses/threads (which is a typical case in DBMS), the reference pattern is hard to detect.

3.1.4 General buffer management and buffer pool management

The general buffer replacement algorithms discussed in this subsection are not designed for DBMS, although
they may be adapted to DBMS buffer pool replacement algorithms.

In an Operating System, applications may not request file access frequently. The typical pattern is
reading the file, performing the computation, and writing the result. However, in a DBMS, the pages in the
buffer pool are accessed very frequently because all database operations are based on the data of the pages.
The request rate to the buffer pool in a DBMS is much higher than that of a file buffer in an Operating
System. This implies more requirements for the buffer pool management algorithms:

• Low overhead. Very small overhead of the buffer pool replacement algorithm is desired, because the
buffer pool has a higher request rate. When the buffer pool is big, the miss ratio between simple
algorithms and complex algorithms is small and the overhead may become essential.

• Simultaneous access. There are normally many users using the DBMS. Therefore, many processes or
threads access the buffer pool concurrently. Because of the high request rate to the buffer pool, the
access contention must be solved so that the mutual exclusive access to the data structures of buffer
pool cannot become a bottleneck. For example, the LRU algorithm used in ADABAS [47] splits one
LRU chain to many LRU chains to avoid the access contention. When other algorithms are adapted
to DBMS, it is important to change them so that the buffer pool can be accessed simultaneously.

3.2 Reference Characteristics of DBMS Buffer Pool

Key to the design of buffer pool management strategies is an understanding of how database applications
refer to pages from the databases. Empirical studies of database reference behavior over the past mainly
focused on the Hierarchical [27, 28, 53, 42] and the CODASYL database systems [17, 58]. Many conflicting
results were reported by them.

1. Randomness. A study on the reference behavior in CODASYL Database Systems [17] showed that
some databases have no locality at all. Moreover, no physical sequentiality was found. The application
under study was a single-user retrieval-only on-line application. The size of the databases used was
small.

2. Sequentiality. Rodriguez-Rosell [42] studied an on-line control system running on IMS which is a
hierarchical DBMS. The results showed the lack of locality in database reference behavior within one
transaction. However, strong sequentiality was found. Based on this sequentiality, some prefetching
techniques were studied to improve the performance [53].

3. Locality is observed, but less than the locality of programs. Effelsberg [17] found that database
reference shows less locality than do programs under virtual memory operating systems. Contrary to
[42], this locality comes from inter-transaction references. Verkamo [58] studied the reference behavior
of some batch programs running on a CODASYL DBMS. The locality was found in the database
references. However, there was a continuous change in the active group, and no fixed locality set was
found. Sequentiality was not found in general cases.

4. Undeniable Locality. Kearns and DeFazio’s study on the reference behavior of IMS in 1983 [27]
showed that the locality of references is an undeniable characteristic of hierarchical database systems.
Furthermore, database locality of reference is in a sense more regular, more predictable, and hence,
more exploitable than the localized reference activities found in programs in general. The workload
studied is generated by batch programs which deals with typically expensive and time-consuming
applications. Their later study in 1989 [28] concludes many previous results. They presented their
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study on a per-transaction and per-database basis. The results showed that the database reference
behavior is predictable and exploitable in this perspective.

5. Diversity. In [10], the reference behavior of Relational DBMS was analyzed based on the operation set
of relational databases, not by measurements from reference strings. The QLSM model was proposed
that maps every database operation into a number of simple reference patterns. Sequential references,
random references, and hierarchical references are included in this model. However, the locality of
references and the effect of multiple users on the reference pattern were not discussed.

Previous studies showed that the database reference behavior has many different characteristics on dif-
ferent applications and DBMSs. The overall characteristics of the DBMS reference behavior is a mix of
different reference patterns.

3.3 Buffer Pool Management Algorithms for DBMS

The general buffer management algorithms discussed in § 3.1 are designed for general purposes like virtual
memory, cache, file system buffer, not for the buffer pool management in DBMS. The reference behaviour in
DBMS buffer pool is different with that in virtual memory, cache, or file system buffer. In a Relational DBMS,
there are a few basic operations defined by the relational algebra [11]. Therefore, only a few reference patterns
exist. The reference behaviour of hierarchical indexes is discussed in § 3.3.1. By analyzing a query execution
plan before executing it, it is possible to predict its reference behavior. Many buffer pool management
algorithms are designed to utilize this property, and show better performance than the general algorithms.
This type of algorithm is discussed in § 3.3.2.

3.3.1 Indexes

In relational DBMS, index is built on some fields of the relation and is used to search for a record quickly
based on the indexed values. B+ tree [12] is a commonly used structure for index. When the index is
accessed, the index tree is traversed from the root level (lowest level) consisting of a single page, down to the
data level (highest level). Therefore, pages in the lower level has a higher probability to be accessed than
pages in the higher level.

ILRU and OLRU

Two replacement algorithms ILRU and OLRU for index access are proposed in [44]. These algorithms try
to make better replacement decisions for index page buffering by the level information of index accesses. In
the ILRU (Inverse LRU) policy, when a page pi,j at level i is accessed, it is placed at the i-th position of the
LRU stack. If the depth of the LRU stack b is less than the number of levels i, the currently referenced page
is placed at level b. ILRU is guaranteed to be always no worse than LRU. It can keep the low level pages
in the buffer even when the buffer size is small. When the buffer gets bigger, the advantages of ILRU over
LRU tend to decrease.

If the access to data pages is uniform distributed, The OLRU (optimal strategy) can be used to achieve
optimal performance. For the OLRU (optimal strategy), the buffer pool is logically partitioned into L
independent regions, each managed by a local LRU chain. Region j contains pages from the j-th level in
the index. When the reference distribution is uniform, the OLRU is optimal under the IRM model. The
more the reference density distribution deviates from uniformity, the more the ILRU is beneficial. When the
reference distributions severely deviate from uniformity, ILRU tends to become more efficient than OLRU.

Priority based index caching

A priority based buffer management algorithm of indexes is proposed in [6]. Each page in the buffer is
assigned a priority value which can be dynamically modified by the upper layer of DBMS to reflect its
usefulness relative to other buffered pages brought into memory. An example of range access in indexes
is discussed. In the range access, a range of pages are accessed through an index. After the first page is
accessed, the index is backtracked to access the following pages. Several rules are used to set the priorities
of pages. A buffer page is considered useful if it will be re-referenced again in the same query and useless

9



otherwise. This information is known because the reference pattern of the range access is known. Useful
pages are assigned higher priority than useless pages. Within useless pages, higher priority is assigned to
pages on lower level, because they have higher probability to be referenced by other queries. Within useful
pages, higher priority is given to more recently used pages because they will be re-referenced sooner when
the index tree is backtracked. However, the range access does not backtrack indexes in practice because
adjacent leaf pages are linked. When the range access degrade to one data page, this algorithm becomes
ILRU algorithm.

3.3.2 Predictive algorithms based on query access plan

Hot Set Model

The Hot Set model [46] is a query behavior model for DBMS that integrates advance knowledge on reference
patterns into the model. It analyzes the loop behavior in the query execution of DBMS, and defines the set
of pages over which there is a looping behavior as a hot-set. If the access plan is executed within a buffer
whose size exceeds the size of the hot sets, the query processing will be fast, because the pages that are
re-referenced in a loop will stay in the buffer. On the other hand, if the buffer cannot contain the hot set
required, the query processing will be much slower. Because there may be more than one looping pattern,
several different hot set sizes may exist in one query. Based on this hot set model, a buffer management
schema is proposed in [45]. The buffer is partitioned into separated regions, one for each process. Each
process is assigned the number of buffers equaling to the hot set of that process. Each region is managed by
local LRU algorithm. Therefore, the hot set model is used to make load control decisions.

QLSM model, DBMIN algorithm

The Query Locality Set Model (QLSM) [10] is similar to the Hot-Set model, but is a more deliberate model.
In this model, typical access behavior of DBMS is analyzed and summarized into some basic reference
patterns: sequential references, random references, and hierarchical references. Different locality set size and
replacement algorithms like LRU or MRU for different reference behaviors can be determined prior to the
execution of the query. The DBMIN algorithm was designed based on the QLSM model. In the DBMIN
algorithm, buffers are allocated and managed on a per file instance (relation or index) basis. Each file
instance is given a local buffer pool to hold its locality set, whose size is determined in advance by the QLSM
model. For each locality set, different local replacement algorithm is selected based on the page reference
patterns of the locality set. Some basic rules are listed here:

1. Straight sequential references – pages are referenced and processed one after another. The locality set
size is 1.

2. Looping sequential references – a sequential reference to a set of pages is repeated several times. The
locality set size is as bigger as possible, up to the point where the entire loop can fit in buffer. MRU
is the best algorithm for managing this kind of locality set.

3. Independent random references – pages are accessed randomly. The size of the locality set is determined
by the Yao’s formula [62].

4. Looping hierarchical – the index tree is accessed repeatedly. The pages at lower level (close to root)
should be kept in the buffer. Because the fan-out of an index page is high, the probability that an
index page at higher level (close to leaf nodes) is referenced again becomes very low. Therefore, the
LIFO algorithm and 3-4 buffers for the locality set is recommended.

DBMIN uses a dynamic partitioning scheme, in which the total number of buffers assigned to a query
may vary as files are opened and closed. The load controller is activated when a file is opened or closed.
Once a file is opened, the load controller checks whether all locality sets can fit in memory. If so, the query
is allowed to proceed; otherwise, it is suspended. When a file is closed, this condition is re-checked to see
whether any suspended query can resume.

Some simulation experiments were performed based on some single query trace strings recorded from
a DBMS. The simulation experiments focused on the effect of load control. It showed that the DBMIN
can achieve a better throughput than CLOCK, FIFO, Working-Set, and Hot Set algorithm, especially when
the number of concurrent queries is high. After combining a feedback load controller with the “50% rule”
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[31] in which the utilization of the paging device is kept busy about 50%, the achieved throughput of the
simple global algorithms is close to that of the DBMIN algorithm. However, because the DBMIN algorithm
can predict the use of buffer space more accurate than the feedback load controller, it still outperforms the
simple global algorithms.

DBMIN algorithm with a predictive load controller

A new load control algorithm over the DBMIN algorithm is proposed in [30]. It dynamically reallocates
the buffer spaces used by queries to maximize the effectiveness of buffer allocation. The return on memory
consumption is used to measure the effectiveness of buffer allocation. When a new query comes in, this
algorithm attempts to get spaces from the queries that are using their buffer less efficiently. Compared with
the other load control algorithms, this algorithm shows 10-15% throughput improvement when the buffer
pool size is very small (70). No results are shown on big buffer sizes.

DBMIN-like algorithm with marginal gains and predictive load controller

Several flexible and adaptable buffer management techniques which are refinements for the DBMIN algorithm
are proposed in [18]. Similar to the QLSM model, the reference behaviour is decomposed into several simple
reference patterns which are managed by local algorithms in local buffers. The marginal gains are computed
for each type of reference pattern to determine the expected number of extra page hits that would be
obtained by increasing the number of allocated buffers. A query can be assigned less buffers than it needs
if the marginal gain of losing some buffers is not too much. This can increase the number of concurrent
queries in the system and reduce the response time of system. A new predictive load control mechanism is
designed. In this load controller, a waiting query is activated with some buffers, if this admission is predicted
to improve the performance of the current state of the system. A throughput predictor and an Effective Disk
Utilization (EDU) predictor are defined to measure the performance of the system. A query is activated only
if it will increase the system throughput or the effective disk utilization based on the load control predictors.
Simulation results indicate that the adaptable algorithms are more effective and flexible than DBMIN. Some
of them are capable of adapting to changing workloads.

DBMIN-like algorithm with prefetching

An approach similar to the QLSM and DBMIN algorithm is proposed in [3]. A resident set (RS) model, which
is very similar to the QLSM model [10], is proposed. Similar to the DBMIN algorithm, a RESBAL algorithm
is built based on the RS model. The difference between RESBAL and DBMIN is that prefetching is used
in RESBAL when locality or sequentiality of reference has been predicted for a particular reference pattern.
The RESBAL, DBMIN, HOT SET, and LRU algorithms are compared when performing a join operation.
When the buffer cannot hold the inner relation, the RESBAL yields much less buffer page faults due to
the prefetch policy. However, the evaluation tests performed is very simple which limited the generality of
this conclusion. When no prefetching can be used or when the buffer is too big or too small, no significant
advantage of the RESBAL algorithm is found than other algorithms.

In all the algorithms discussed in this subsection, the reference pattern of DBMS is utilized. Because
the reference behavior is well predicted before the execution, the performance is often superior to the global
algorithms. It can work well in circumstances when similar queries are executed repeatedly. However, in
multi-user situations, the query plan analysis can overlap in complicated ways, and these algorithms do not
take this effect into account. When the buffer is big and the hit ratio is high, the advantage of these complex
algorithms over the simple global algorithms (LRU, CLOCK) is small.

4 Physical On-disk Level – Optimization of Disk I/O

Besides using an in-memory buffer, another important way of improving the performance of storage man-
agement is to improve the disk I/O efficiency. This approach can be categorized into two levels: the software
level and the disk level. In the software level, the on-disk data structure and data placement strategy are
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designed based on the logical structure of data. While in the disk level, the logical structure of data is not
considered. Instead, only the physical nature of disk is utilized to improve the disk I/O efficiency.

Understanding the factors affect disk performance is essential in order to optimize the disk performance.
The structure of disk and RAID system are introduced in § 4.1 and § 4.2 before discussing the optimization
techniques. The software level approaches are discussed in § 4.3 and the disk level approaches are discussed
in § 4.4.

4.1 Disk structure

A magnetic disk has a set of circular platters stacked vertically on the same axle [54, p.487,p.515]. Data are
recorded on both sides of each platter. A disk head is used on each surface to read and write data. While the
disk drive is working, the platters are rotating at constant speed. The concentric set of rings on the platter
that can be accessed by the disk head while the platters are turning are called tracks. The same sized tracks
on different platters’ surfaces consist of a cylinder. In modern disks, there are thousands tracks per surface.
Data are transferred to and from the disk in blocks. Typically, the block is smaller than the capacity of
the track. Accordingly, data are stored in block-size regions known as sectors. There are typically several
hundred sectors per track. For most disk drives, a fixed sector size of 512 bytes is used. Before accessing
the data, the disk head should be moved to the correct track and wait for the beginning of the sector goes
beneath the head. The time it takes to position the head at the track is known as seek time. The time it
takes for the beginning of the target sector to reach the head is known as rotational latency. The time it
takes to read or write the data is known as transfer time. The total disk access time can be computed as:

Taccess = Tseek + Trotate + Ttransfer (1)

The disk I/O bandwidth is wasted during the seek time and rotational latency because data cannot be
transferred to and from the disk in this time. If small blocks (less than 16K bytes) on random locations of
the disk are accessed which is typical in the OLTP workload, more than 60% disk I/O bandwidth is wasted
on the the seek time and more than 30% disk I/O bandwidth is wasted on the rotational latency [33]. If
requests have good locality, i.e. the next cylinder to access has higher probability to be close to the previous
access cylinder, which is typical in the Fast File Systems (§ 4.3.2), the rotational latency will dominate the
access time because the disk head need not go to cylinders far away. Only when transferring very large data
blocks, the transfer time dominates the access time.

The seek time can be dramatically decreased by using disk scheduling algorithms (§ 4.4.1) and/or putting
related data into cylinder groups (§ 4.3.2). The rotational latency can be decreased by increasing the spindle
speed of disk. However, it cannot be decreased as effectively as that of seek time. Most techniques discussed
in this section are aimed at decreasing seek time. Only the FFS with read and write clustering (§ 4.3.3) tries
to reduce rotational latency for sequential I/O. The freeblock scheduling (§ 4.4.4) tries to utilize the wasted
bandwidth on rotational latency.

A new storage technology, based on microelectromechanical systems (MEMS), has come forward promis-
ing significant performance and cost improvements relative to magnetic disks [21]. MEMS-based storage
consists of thousands of small, mechanical probe tips (read/write head) that access a movable non-volatile
magnetic media sled. The magnetic media is movable above an array of several thousand fixed probe tip.
Each probe tip access a small rectangular area of the magnetic media. Because the positioning of probe tips
is much more accurate than positioning a read/write head on a modern disk drive, the storage density of
MEMS-based storage is much higher than magnetic disk drives. Similar to disks, the data on the MEMS-
based storage is organized into cylinder, track, and sectors. Moreover, the access time to the data depends
on the distance between the probe tips and the data on the magnetic media. The access time difference is
much smaller in MEMS than in megnetic disks. Simulation results [21] show that the average access times
of MEMS-based storage devices achieve access times that are 6.5X faster than a modern disk.

4.2 Redundant Array of Independent Disks (RAID)

To overcome the limitations of the performance of a single disk, the RAID (Redundant Array of Independent
Disks) was proposed [41, 7]. RAID is a set of physical disk drives viewed by the operating system as a single
logical drive. Different disks in RAID can be accessed simultaneously. All the data are distributed across
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the disks. Redundant disk capacity is used to store parity information, which guarantees data recoverability
in case of a disk failure.

RAID has several levels that provide different I/O characteristics and redundancy methods. The most
commonly used levels are RAID-0 (non-redundant), RAID-1 (mirrored), and RAID-5 (block-interleaved
distributed parity).

In RAID-0, the data are distributed across all of the disks in the array. It provides good performance but
does not contain redundancy information. In RAID-1, all data are duplicated on different disks. It provides
good performance and redundancy is achieved. The problem of RAID-1 is that only half of the disk space
can be utilized.

In RAID-5, a parity strip is calculated across corresponding strips on each data disk. The parity strips
are stored on all disks in a round-robin manner. If the user data require N disks, N+1 disks are required
for RAID-5, because the parity information will occupy the space of one disk. RAID-5 provides good read
performance and reliability. However, when writing small blocks, old parity blocks may need to be read and
written again after the new parity block is computed. This incurs write penalty. If big blocks are written
into RAID-5, the new parity block can be calculated without reading the old parity block. Therefore, writing
big blocks is desirable for RAID-5.

4.3 Software level approaches

The representative study in software level approaches to improve disk performance lies in file systems. The
logical structure of the data (files or directories) is known. The on-disk data structures and the placement
of files on disks are studied.

4.3.1 Traditional UNIX file system

In the traditional UNIX file system, an index structure inode is used to control the allocation of blocks [54,
p.552]. The location inodes is separated from that of file data. Thus, accessing a file normally incurs a
long seek from the file’s inode to its data. The free blocks are managed by storing the block numbers of all
free blocks in some free blocks. The disk location of the free blocks are not considered when allocated to
files. After the file system has been used for some time, the free block list becomes very fragmented and the
blocks of files are allocated randomly over the disk. The block size is 512 bytes, which is quite small. Under
this condition, the next sequential data block often is not on the same cylinder, so seeks between 512-byte
data transfers are required frequently. Less than 2% of the maximum disk throughput can be achieved [35,
p. 269]. Disk seek time dominates performance in this case. The first attempt to improve the performance
is to double the block size. The performance also doubled, but is still only 4%.

4.3.2 Fast File System

In order to overcome the problem of the traditional file system, The Berkeley Fast File System (FFS) was
designed [36]. The on-disk data structure of FFS is the same as the traditional UNIX file system, but the
placement algorithm is carefully designed to reduce disk seek time.

In FFS, the disk partition is divided into one or more areas, each of which is called a cylinder group.
Each cylinder group comprises one or more consecutive cylinders on the disk. Some inodes are allocated for
each cylinder group. When the file data are allocated, FFS attempts to allocate space close to the inodes
that describe them. Data blocks for a file are tried to be allocated in the same cylinder group.

Most systems do not have a dedicated I/O processor. If many blocks are allocated sequentially on a
track, after reading or writing of one block, the processor needs to process interrupt, prepare the next
transfer before accessing the next block. When the request for the next block is sent to the disk, that block
may just passed by the disk head, and almost a whole disk revolution need to be wait before that block is
ready. The rotational delay is too expensive in this case. Therefore, sequential blocks are allocated with a
gap on the disk. The size of the gap depends on the expected time for the processor to service an interrupt
and to schedule a new disk transfer. Blocks allocated with this gap are called rotationally optimal blocks.

A large block size (say, 8K bytes)is used to increase disk transfer efficiency. To reduce internal fragmen-
tation caused by large block size, the last block of a file can occupy only part of the block (fragment), and
the unused fragments can be allocated to other files.
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FFS can read and write individual files at roughly 50% of the disk bandwidth [35, p.285]. It cannot
achieve higher throughput because of the gap between rotationally optimal allocated blocks is normally one
block.

4.3.3 Fast File System with I/O clustering

In order to reduce the rotational latency of FFS when accessing sequential blocks of a file, the I/O clustering
was designed [37]. Sequential dirty buffers are accumulated in a buffer with up to 64K bytes space. A write
request is sent until the buffer is full or no more sequential data writes are needed. Therefore, no gap between
blocks are needed and the rotational latency is minimized. When reading files, if the file system discovers
that a file is being read sequentially, it allocates a buffer big enough to hold the contiguous set of blocks and
read these blocks in a single I/O request.

The FFS with I/O clustering can utilize almost all available disk bandwidth when accessing individual
files [35, p.285].

4.3.4 Log-structured File System

Both FFS and FFS with I/O clustering are optimized for accessing sequential blocks for the same file. In
a multi-programming system, different users access different files simultaneously. Therefore, the disk head
may need to move between different locations of the disk. Because many reads can be absorbed by the
main memory buffer, the performance problem to be solved in modern file systems is that of writing a large
volume of data, from multiple files, to the disk.

The Log-structured File System (LFS) [40, 43, 48], as proposed by Ousterhout and Douglis, attempted to
address this problem. In LFS, all file system data are stored in a single contiguous log. The LFS is optimized
for writing, and no seek is required between writes, regardless of the file to which the writes belong. Because
it writes big blocks sequentially, it is suitable when working with RAID-5 to avoid write penalty.

The LFS uses almost the same data structure (inodes and directories) as FFS. Where the LFS differs
from the FFS is in the layout of the inode, directory and file data blocks on disk. The underlying structure
of the LFS is a sequential, append-only log. The log is statically partitioned into fixed-sized contiguous
segments which are generally 0.5 to 1M bytes (this should be larger on RAID systems). All writes to the
disk are appended to the logical end of the log. Because the disk space is not infinite, portions of the log that
have already been written must be made available periodically for reuse. This process is called cleaning, and
the utility that performs this reclamation is called the cleaner. The cleaner runs in user mode, and flexible
cleaning policies can be used in the cleaner. The logical order of the log is not fixed, and the log should be
viewed as a linked list of segments, with segments being periodically cleaned, detached from their current
position in the log, and re-attached after the end of the log. The segments are partitioned into one or more
partial segments so that the LFS can write data less than a segment. A partial segment is a result of a single
write operation to the disk.

In ideal operation, the LFS accumulates dirty blocks in memory. When enough blocks have been accu-
mulated to fill a segment, or when they have to be written (because of a fsync or sync call, or because of
closing a file), they are written to the disk in a single, contiguous I/O operation. Because the location of
data blocks are changed when they are written, the inodes have to be changed accordingly. These modified
inodes are written into the segment at the same time as the data. As a result of this design, inodes are no
longer in fixed locations on the disk, and the LFS uses an additional data structure called inode map, which
maps inode numbers to the current disk addresses of the blocks containing them.

The inode map is stored in the index file (ifile), which is maintained as a regular, read-only file visible
in the file system. Because the ifile’s inode and data blocks are themselves written to new locations each
time that they are written, the superblock, which is on a fixed location on the disk, is used to find the ifile’s
inode. In addition to the inode map, the ifile contains the number of clean and dirty segments and the
segment-usage information. This information is shared between the kernel and the cleaner.

When reading data from the LFS, the steps are very similar to that in FFS: get the inode address and
read the inode information from the inode number, get the physical disk address from the inode based on
the logical disk number, and read data from the physical disk address. The only difference is that because
the inode address cannot be obtained directly from the inode number, a lookup in the inode map is needed
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before the above steps. Normally, the most frequently used part of the inode map is cached in memory.
Therefore, the LFS has similar overhead as FFS when reading files.

When a dirty block must be flushed to the disk, the LFS gathers all the dirty blocks for writing. The dirty
blocks are sorted by file and logical block number, and then are assigned disk addresses. Their associated
meta-data blocks (inodes and indirect blocks) are updated to reflect the new disk addresses. The dirty blocks
and the meta-data blocks are formatted into one or more partial segments. Each partial segment is written
to the disk sequentially in one write request.

In LFS, cleaning must be done periodically to make new segments available for writing. Cleaner is a
process running in user mode. It reads the ifile and computes the cleaning cost and benefit for cleaning
segments. The segment with the best benefit-to-cost ratio is selected for cleaning. The cleaner reads the
segment into memory, and only writes the live data of the segment out. The dead data (data that had been
written again) will be discarded. This segment will be marked as clean after the cleaning.

The design of the cleaning algorithm is the most challenging part of the LFS because of its impact on
performance. Cleaning must be done before the file system fills up. If the cleaning is done when the file
system is lightly utilized, it is called background cleaning; otherwise, it is called on-demand cleaning. The
background cleaning does not adversely affect the normal file system activity, while on-demand cleaning can
result in big performance degradation. The cleaning algorithms have been studied in some research works
[43, 2, 34]. A better cleaning cost and benefit model is used in [34] to select optimal segment size and
cleaning method. A simple heuristic is proposed in [2] to determine idle period and attempts perform all
the cleaning work in background. Therefore, the cleaning won’t affect the user response time in most cases.

In previous research works [50, 48, 51, 49], on-demand cleaning is found to have adverse effect on the
performance of system, especially in OLTP environments. Peak or near-peak transaction rates must be
sustained at all times in OLTP workload. Therefore, there may not be enough idle time for the system to
do the cleaning. Moreover, because the updated data are randomly distributed on the disk in the OLTP
workload, most segments are fairly full before cleaning. 60-80% writes and 31% of all blocks transferred are
generated by the cleaner [48]. The cleaning overhead is high that a performance degradation of about 35
to 50 percent was observed under these workloads. After this performance degradation, the LFS provides
comparable but sometimes worse performance to FFS with I/O clustering.

The freeblock scheduling method [33] which will be discussed in § 4.4.4 can let LFS do the cleaning
without affecting foreground response times even in never-idle systems.

In the MEMS-based storage devices, the access time difference when accessing data on different data is
smaller than that on the traditional disk drives [21]. Therefore, the data organization will have less effect
on the performance of the system but still useful.

4.4 Disk level approaches

4.4.1 Disk scheduling policies

In a multiprogramming environment, typically there are many requests for each disk. They are maintained
in a queue by the operating system or the disk controller. If the items are selected from random order, the
disk head has to visit different tracks randomly, giving the worst possible performance. The disk scheduling
policies can be used to improve disk performance [54].

If the items are selected in a first-in-first-out (FIFO) sequence, it is fair to all requests but the performance
may still suffer for the same reason. Some disk scheduling policies other than FIFO can be used to reduce
the disk seek time.

The Shortest Service Time First (SSTF) policy is to select the disk I/O request that requires the least
movement of the disk head from its current position. This algorithm has better performance than FIFO.
The problem of SSTF is that it may always select requests close to the current disk head position and starve
other requests.

The SCAN algorithm can prevent this kind of starvation. In the SCAN policy, the disk head moves in
one direction only, satisfying all waiting requests, until no more requests are in that direction. The head
then moves in reversed direction and again picking up all requests in order. The SCAN policy has similar
performance as SSTF but the starvation is less likely to happen. This policy favors requests that are for
tracks nearest to both innermost and outermost tracks. The C-SCAN (circular SCAN) policy can avoid this
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problem of SCAN. In C-SCAN, requests are fulfilled only when the head is moving in one direction. If no
more requests are on that direction, the head returns to the opposite end of the disk and scans again.

Both SCAN and C-SCAN may favor the latest arriving jobs and starvation may happen if requests for
the same track keep coming. The N-step-SCAN can address this problem. The N-step-SCAN segments the
disk request queue into sub-queues of length N . Only one sub-queues can be processed at a time. All new
coming requests are added to some other queues.

In the MEMS-based storage devices, because the access times depend on the relative locations and
motions of the movable media and the desired data, appropriate request scheduling can be used to reduce
access times. Simulation results in [21] show that most of the algorithms and insights from previous disk
scheduling research will also be relevant to systems with MEMS-based storage devices.

4.4.2 HP AutoRAID hierarchical storage system

Different RAID levels have different characteristics. It is hard to configure and hard to change the configu-
ration. The HP AutoRAID hierarchical storage system [60] provides a solution to this problem. A two-level
storage hierarchy is implemented in a disk array. The higher level uses mirrored (RAID-1) to store active
updated data, which provides redundancy and good performance. The lower level uses RAID-5 (distributed
parity) to provide storage cost for inactive data, at somewhat lower write performance.

Because data may migrate between the two storage hierarchy levels, direct physical addresses cannot be
used. The logical disk addresses are sent to the AutoRAID disk controller. They are converted to physical
addresses transparently. The AutoRAID presents one or more logical units to its hosts. Each logical unit is
treated as a virtual device inside the array controller.

Some mapping structures are defined to translate logical addresses in a logical unit to physical addresses.
Each disk is partitioned into large objects called Physical EXtents (PEXes). PEXes are 1MB in size. PEXes
on different disks (at least three) can be combined into a Physical Extent Group (PEG). A PEG may be
assigned to either the RAID-1 or the RAID-5 storage class. The logical space provided by AutoRAID is
divided into 64KB units called Relocation Blocks (RBs). RBs are allocated in PEGs. RBs are basic units of
migration in the system. A virtual device table is defined for each logical unit. It lists the RBs and pointers
to the PEGs in which they reside. A PEG table is defined for each PEG. It holds list of RBs in the PEG
and list of PEXes used to store them. A PEX table is defined for each physical disk drive.

When there is enough space in the array, all data are stored in mirrored storage. When the free space
of the array is less than a low-water mark, the migration begins to migrate data from mirrored storage to
RAID-5. The data selected for migration are based on an approximate Least Recently Written algorithm.
Migrations are performed in the background until the free space in the mirrored storage class exceeds a
high-water mark that is chosen to allow the system to handle a burst of incoming data.

When data in RAID-5 storage are updated, they are promoted to mirrored storage because they are
considered active data. When the RAID-5 storage is written, an approach similar to LFS is used. The
RAID-5 storage is written as an append only log, and all new writes happens at the end of the log. Cleaning
are needed periodically to clean the holes in the RAID-5 storage.

4.4.3 Virtual log for a programmable disk

In order to minimize the latency of small synchronous writes to disks, a virtual log approach is proposed
[59]. This approach is designed for a single disk. The basic idea is to write to a disk location that is close to
the current head location.

When some data are modified, they may be written on different locations of the disk. This non-overwrite
idea is similar to the approach of LFS. The difference is that new data can be written to any location of the
disk, thus constructs a virtual log. An analytical model shows that even when the disk has little free space,
the average time to locate a free sector is still significantly smaller than a half-rotation delay. This result is
also consistent with simulation results.

The physical address of a disk block can change when it is updated. Therefore, data in the virtual log
are not necessarily physically contiguous. Logical addresses are used for the virtual log. An indirection map
can convert logical disk addresses to physical addresses. This indirection map is updated whenever new data
are written. The new updated part of the map is written close to the head position. A backward pointer to
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the previous part of the map is maintained. All parts of the indirection map constructs a single-linked list.
All data of the indirection map can be retrieved from the last part of the indirection map.

Since the virtual log can utilize any free space on the disk, no cleaning is required. This is an advantage
to the LFS approach. However, it has the same disadvantage as LFS that randomly updated data may have
bad sequential read performance.

4.4.4 Extracting free bandwidth from busy disk drives

When a disk drive is serving foreground applications, there are rotational latencies between requests. This
potential free bandwidth is wasted. The freeblock scheduling proposed in [33] can provide these bandwidth
to background applications without affecting foreground response time.

The freeblock scheduling predicts how much rotational latency will occur before the next foreground data
transfer, squeeze some additional transfers into that time, and still seek to the destination track in time for
the foreground transfer. The additional transfers may be on the current or destination track or another
track.

For random workload, 27-36% of disk head usage can be attributed to rotational latency. This amount of
potential free bandwidth is available for freeblock scheduling. For large random requests (e.g., 256KB), the
potential free bandwidth is still 15%. If requests have access locality (e.g., accessing requests in a cylinder
group repeatedly), the potential free bandwidth increases.

The background application should register many disk requests to the system with freeblock scheduling.
When one of the request is satisfied, the background application is notified through a callback function with
the requested data. The background application can then process the data received.

This approach can be used in applications that are low priority, have large sets of desired blocks and
no particular order of access. The cleaning in LFS satisfies these requirements. The cost of cleaning can
be close to zero when applying the freeblock scheduling. The logic of cleaning is to examine the segments,
read in live blocks and write them out. The live blocks can be read in any order via freeblock scheduling
and moved into new locations at once. To increase the chance that the live block requested can be read
in quickly, the cleaner can select several segments and clean them in parallel. This cleaning activity is not
entirely for free because the live data need to be written out to the log with the foreground requests. When
all live blocks are cleaned from a segment on the disk, that segment becomes available for future use. The
on-demand cleaning only kicks in when the background cleaner cannot generate free segments fast enough.

One experiment showed that on a busy LFS system dominated by small-file activities, the cleaner using
freeblock scheduling can perform all cleaning for almost free when the disk utilization is less than 93%.
Another experiment was to study data mining via freeblock scheduling on a OLTP system. The freeblock
scheduling increases useful disk head utilization from 3% to 24%, and it allows the data mining application
to complete over 47 full scans per day on the 9GB disk with no effect on foreground OLTP performance.

The freeblock algorithm needs to know detailed knowledge of many disk performance attributes, including
layout algorithms and time-dependent mechanical positioning overheads. This may require that freeblock
scheduling decisions be made by disk firmware.

4.4.5 Logical disk

The Logical Disk (LD) [14] defines a new interface to disk storage. It separates file management and disk
management by using logical block numbers and block lists. Although modern disk systems provide logical
interfaces to the upper layer, some physical details of the disk is still needed for many systems. For example,
the cylinder organization and rotational latency are important parameters for the FFS file system [36]. This
logical disk interface is easy to support multiple file systems.

The basic abstractions provided by LD are logical block numbers, block lists, atomic recovery units, and
multiple block sizes. No cylinder, track and sector information are visible from the LD interface. The data
placement are managed transparently by LD. Because the logical block numbers are used, LD can change
the physical address of blocks without notifying the file system. The file system can give hints to LD to
guide effective placement of data. The file system can put related blocks into ordered block lists. LD will
try to cluster blocks on the same list together on disk.

After this LD interface has been implemented, the file system can be easily changed to use LD. Different
implementations of LD can be applied without changing the file system. A Log-structured LD (LLD)
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interface was implemented and tested in MINIX. It shows similar performance characteristics as the Sprite
LFS.

5 Logical Level – Smarter Use of Memory

In the current buffer pool management of DBMS, the database pages from the disks are stored directly in
the buffer pool. If the logical information of the pages are utilized and other database entities are stored
in the buffer pool, the buffer space may be utilized more efficiently. These database entities can be index
pointers, table tuples, or other logical data entities.

5.1 Index pages

In RDBMS, the index is often structured as a B+-tree. When the index is searched, the index tree should
be traversed from the root node to the leaf node. The reference to these pages consists of an “access path”.
Only when all pages on the access path are in the buffer pool, no page faults will occur.

A buffer management strategy for B+-tree indexes (GHOST) is proposed in [20]. The used “paths”
of the B+-tree is buffered in part of the buffer by the ILRU algorithm, while the remainder is devoted to
maintaining a Splay-tree with pointers to leaf pages containing frequently used leaf pages. The Splay-tree
is a self-adjusting binary search tree. The Splay-tree does not try to maintain a balanced tree, but try to
put frequently referenced nodes close to the root. Whenever a node of the Splay-tree is referenced, this
node is moved to the root through the algorithms used in the AVL tree. In the long run, popular nodes of
the Splay-tree are close to the root. Therefore, the reference to these nodes requires less search path and
the average access time is bounded by O(log n). Through the Splay-tree, the buffer manager can maintain
pointers to leaf nodes long after the paths leading to the leaf nodes have been replaced, thus maintaining
“ghost” paths to the nodes. It normally requires less space for storing the pointers to leaf nodes than storing
the access path from the index root to the data page. Because most frequently used leaf pages are stored in
the Splay-tree, many access may find the pointer to data page from the Splay-tree and only need one I/O to
read the data page. If the page cannot be found in the Splay-tree, the index tree will be searched directly
with the help of the ILRU buffer. Popular index pages is likely to be obtained from the ILRU buffer without
additional disk I/O.

Three different types of queries are tested in the experimental study: uniform, skewed-unclustered, and
skewed-clustered. 50% of the available memory is devoted to the Splay tree and the remaining is reserved
for buffering index nodes under the ILRU strategy. The test results showed that the GHOST shows higher
hit ratio and lower I/O cost when the buffer size is big for all workloads. For the non-uniformed query
workloads, the gain is about 25%-30%. For the range queries, the GHOST scheme also shows up to 20%
lower I/O count. By varying the amount of memory used by the Splay tree of the GHOST scheme, it is
found that when the total available memory is small, allocating more memory to the Splay tree is better.
On the other hand, with a large buffer size, the performance hits the performance limit rapidly even with
small allocations to the Splay tree.

5.2 Data pages

Typically, a data page contains many tuples of a table. If only some of the tuples in a page is hot, caching the
whole page wastes buffer space. Studies in [32] show that in the TPC-C benchmark, if hot tuples are clustered
into same pages (which is allowed by the benchmark), the performance can improve a lot. However, because
the hot set of tuples may change over time in real workloads, the static clustering is not much meaningful
in the real world.

If the tuples instead of pages are cached in the buffer pool, the wastes of buffer pool space can be
decreased. The experiments in [13] shows that when the tuples are not clustered well, tuple caching can
yield much shorter response time than page caching. However, because the overhead of tuple-caching is
much higher than page-caching, pure tuple-caching may not be beneficial.

[5] presented a hybrid algorithm HAC for caching management in the client cache in a client/server
structured OODBMS. HAC is an adaptive combination of object-caching and page-caching. When the
clustering of objects is good, the algorithm performs like a page-caching algorithm which decreases overhead.
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When the clustering of objects is bad, the algorithm performs like a object-caching algorithm, which decreases
miss ratio.

The object header is 32 bits which consists of a 22-bit pid and a 9-bit oid. The pid is the page number
the object resides. The oid identifies the object within its page. Each page contains an offset table that
maps oid to 16-bit offsets within the page. The existence of object table allows the compaction of the object
within the page.

The client cache is partitioned into a set of page-sized frames. If many objects in the frame are hot
objects, this frame is intact; if only a few objects in the frame are hot, this frame is compacted and only
hot objects are retained. When objects are cached in the client cache, their object headers are translated to
pointers pointing the memory addresses of the objects via an indirect pointer swizzling table. This translation
is only done when this object is actually referenced. This lazy translation method avoids much overhead
of translating many never used object headers. The use of indirection table allows HAC to move and evict
objects easily.

The object usage and frame usage information are maintained for replacement decisions. The object usage
contains both recency and frequency of accesses. The frame usage is computed from the object usage of the
objects it contains. The less the frame usage value, the less the usefulness of the frame. Because computing
the frame usage and selecting a frame with the lowest usage are expensive, they are not computed frequently.
A candidates set of frames is maintained. HAC only selects the victim frames from the candidates set. If
the time a frame in the candidates set is longer than a threshold, its frame usage information is likely to be
out of date and this frame is removed from the candidates set. A variant of the CLOCK algorithm is used
to select frames into the candidates set. The cache is organized as a circular queue of frames. A primary
scan pointer and N secondary scan pointers are used to scan the queue. All the pointers are equidistant.
Each time when a frame needs to be freed, the primary scan pointer scans S frames, computes the frame
usage, and adds them to the candidates set if necessary. At the same time, each secondary scan pointer also
scans S frames, find frames with a large number of uninstalled objects and add them into the candidates set
if necessary. If there are E frames in the candidates set, O(log E) time is needed to find the lowest-usage
frame.

Performance experiments showed that HAC achieves lower miss rate than the best page-caching and dual-
buffering systems in the literature. Although this work is for the client cache in a client/server structured
OODBMS, its principles can be applied to RDBMS.

Most queries in the OLTP workload are simple select queries. The result of a query is one tuple. Tuple-
caching is suitable in this workload. In the OLAP workload, queries are complex, which include many scan
operations on tuples. Typically all tuples in a page are referenced when a page is accessed. Therefore, there
is no need to do tuple-caching in OLAP workload.

6 Conclusion

This survey gives a comprehensive overview to the storage management of DBMS. The storage management
is divided into three levels (logical , physical in-memory, and physical on-disk) and discussed separately.

The physical in-memory level has the most impact on the performance of the performance of DBMS
and was studied intensively for decades. The variations of LRU and CLOCK algorithms are popularly used
in real systems because they are easy to implement, have small overheads, and good performance. Many
sophisticated replacement algorithms were designed. Some algorithms are designed for the special reference
patterns of DBMS queries. These algorithms provide lower miss ratio than LRU and CLOCK especially
when the buffer size is small. The miss ratio difference between the algorithms becomes small when the
buffer size is big, which is the case in modern DBMS systems.

Many algorithms of the physical on-disk level used in DBMS are borrowed or derived from file systems or
storage systems. The physical on-disk level is important to the performance of DBMS because this level is
typically the bottleneck. The buffer pool can absorb reads but not writes effectively when it is big. Therefore,
improving the performance of writes becomes more and more important. The Log-structured File System
provides excellent potential write performance especially for systems using RAID. However, the cleaning
cost eliminates most advantages of LFS. Several approaches to decrease the cleaning cost are discussed.
Many of these approaches are only verified by simulation. This log-structured approach was mainly studied
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in file system context. Further research work is needed to test whether this idea can improve the efficiency
of storage management of DBMS.

The logical level of the storage management has few attention from researchers. By caching objects/tuples
of the database, the memory can be utilized better than caching disk pages. This approach has been used in
OODBMS but not in relational DBMS. The GHOST algorithm stores a small index search tree in memory
to occupy smaller space than storing index pages. Both approaches may decrease the buffer pool miss ratio.

There are many approaches in each level of the storage management of DBMS. Studying only one level
may not yield significant boost to the performance. All these three levels should be studied and integrated
to further improve the performance of storage management of DBMS.
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